第二部【企業情報】

第1【企業の概況】

1【主要な経営指標等の推移】

回次

第20期

第21期

第22期

第23期

第24期

決算年月

平成25年6月

平成26年6月

平成27年6月

平成28年6月

平成29年6月

売上高

(千円)

334,837

369,245

366,774

596,906

801,811

経常利益

(千円)

54,193

83,630

56,033

124,514

199,706

当期純利益

(千円)

22,767

51,750

38,710

83,731

129,925

持分法を適用した場合の投資利益

(千円)

資本金

(千円)

65,000

65,000

65,000

139,240

139,240

発行済株式総数

(株)

1,200

1,200

4,800

5,120

512,000

純資産額

(千円)

138,497

205,028

252,535

454,858

584,783

総資産額

(千円)

360,041

587,377

827,632

1,056,250

1,122,968

1株当たり純資産額

(円)

115,414.66

170,856.76

52,611.64

88.84

114.22

1株当たり配当額

(円)

1,000

1,000

1,000

(うち1株当たり中間配当額)

()

()

()

()

()

1株当たり当期純利益金額

(円)

18,973.09

43,125.63

8,064.71

16.84

25.38

潜在株式調整後1株当たり当期純利益金額

(円)

自己資本比率

(%)

38.5

34.9

30.5

43.1

52.1

自己資本利益率

(%)

17.8

30.1

16.9

23.7

25.0

株価収益率

(倍)

配当性向

(%)

5.3

2.3

12.4

営業活動によるキャッシュ・フロー

(千円)

129,718

211,070

投資活動によるキャッシュ・フロー

(千円)

300,790

114,564

財務活動によるキャッシュ・フロー

(千円)

185,151

55,141

現金及び現金同等物の期末残高

(千円)

258,026

300,026

従業員数

(人)

11

13

15

20

27

(外、平均臨時雇用者数)

( 2 )

( 2 )

( 3 )

( 3 )

( 1 )

(注)1.当社は連結財務諸表を作成しておりませんので、連結会計年度に係る主要な経営指標等の推移については記載しておりません。

2.売上高には、消費税等は含まれておりません。

3.持分法を適用した場合の投資利益については、当社は関連会社を有していないため記載しておりません。

4.第20期及び第21期潜在株式調整後1株当たり当期純利益金額については、潜在株式が存在しないため記載しておりません。第22期、第23期及び第24期潜在株式調整後1株当たり当期純利益金額については、潜在株式は存在するものの、当社株式は非上場であり、期中平均株価が把握できないため記載しておりません。

5.株価収益率については、当社株式は非上場であるため、記載しておりません。

6.平成26年11月1日付で普通株式1株につき4株の株式分割を行っておりますが、第22期の期首に株式分割が行われたと仮定し、1株当たり純資産額及び1株当たり当期純利益金額を算定しております。また、平成28年11月11日付で普通株式1株につき100株の株式分割を行っておりますが、第23期の期首に当該株式分割が行われたと仮定し、1株当たり純資産額及び1株当たり当期純利益金額を算定しております。また、平成29年12月30日付で普通株式1株につき10株の株式分割を行っておりますが、第23期の期首に当該株式分割が行われたと仮定し、1株当たり純資産額及び1株当たり当期純利益金額を算定しております。

7.第20期、第21期及び第22期の財務諸表については、「会社計算規則」(平成18年法務省令第13号)に基づき作成しており、第23期及び第24期の財務諸表については、「財務諸表等の用語、様式及び作成方法に関する規則」(昭和38年大蔵省令第59号)に基づき作成しております。なお、第22期の数値については、同期の定時株主総会において承認された数値について誤謬の訂正による修正再表示を反映しております。

8.第23期及び第24期の財務諸表については、金融商品取引法第193条の2第1項の規定に基づき、有限責任監査法人トーマツの監査を受けておりますが、第20期、第21期及び第22期の財務諸表については、当該監査を受けておりません。

9.第20期、第21期及び第22期については、キャッシュ・フロー計算書を作成しておりませんので、キャッシュ・フローに係る各項目については記載しておりません。

10.当社は、平成26年11月1日付で普通株式1株につき4株の株式分割、平成28年11月11日付で普通株式1株につき100株の株式分割、平成29年12月30日付で普通株式1株につき10株の株式分割を行っております。

そこで、東京証券取引所自主規制法人(現 日本取引所自主規制法人)の引受担当者宛通知「『新規上場申請のための有価証券報告書(Ⅰの部)』の作成上の留意点について」(平成24年8月21日付東証上審第133号)に基づき、第20期の期首に当該株式分割が行われたと仮定して算出した場合の1株当たり指標の推移を参考までに掲げると、以下のとおりとなります。

なお、第20期、第21期及び第22期の数値(1株当たり配当額についてはすべての数値)については、有限責任監査法人トーマツの監査を受けておりません。

 

第20期

第21期

第22期

第23期

第24期

 

平成25年6月

平成26年6月

平成27年6月

平成28年6月

平成29年6月

1株当たり純資産額

(円)

28.85

42.71

52.61

88.84

114.22

1株当たり当期純利益金額

(円)

4.74

10.78

8.06

16.84

25.38

潜在株式調整後1株当たり当期純利益金額

(円)

1株当たり配当額

(円)

0.25

0.25

1.00

(うち1株当たり中間配当額)

(-)

(-)

(-)

(-)

(-)

 

2【沿革】

当社代表取締役社長の津村尚史は、世の中にないオンリーワンの技術により製品を作り出し、広く社会に貢献することを目指し、株式会社ジェイテック(現株式会社ジェイテックコーポレーション)を設立いたしました。設立当初は、大手企業と創薬向け自動細胞培養装置の共同開発を進め、近年には再生医療及びiPS細胞関連機器の開発、製造を推進しました。

また、同時に産学連携も積極的に推進し、現在の放射光施設用X線ナノ集光ミラーの事業化を開始いたしました。本事業では、当社の自動細胞培養装置などの機器開発のノウハウを活かし、ミラー製造に関するナノ加工・ナノ計測設備を自社にて開発し、事業の高度化・効率化を図りました。現在では、放射光施設「SPring-8(Super Photon Ring-8GeV)」(以下「Spring-8」という。)やX線自由電子レーザー施設「SACLA(Spring-8 Angstrom Compact Free Electron Laser)」(以下「SACLA」という。)に代表される国内外の先端的放射光施設やX線自由電子レーザー施設への納品を継続して行っています。

 

平成5年12月

大阪コンピュータ工業株式会社との共同出資により、大阪府吹田市に資本金10,000千円で株式会社ジェイテック(現株式会社ジェイテックコーポレーション)を設立。

平成6年7月

バイオ自動機器(自動細胞培養装置、薬効評価装置)を開発。
大阪中小企業投資育成株式会社より出資を受け、資本金を15,000千円に増資。

平成9年7月

「完全表面創成のための高濃度スラリー精製システムの研究開発」が、科学技術振興機構(現国立研究開発法人科学技術振興機構、以下「JST」という。)の平成9年度独創的研究成果育成事業に採択され、大阪大学(現国立大学法人大阪大学、以下「大阪大学」という。)と共同研究を実施。

平成14年7月

「プラズマCVM法による超精密バリ除去・判定装置開発」が経済産業省の平成14年度創造技術研究開発事業に採択され、大阪大学と共同研究を実施。

平成16年1月

資本金を40,000千円に増資。

平成16年8月

神戸市中央区に本社を移転。

平成17年4月

大阪大学及び独立行政法人理化学研究所(現国立研究開発法人理化学研究所、以下「理化学研究所」という。の研究成果をもとにX線ナノ集光ミラーの事業化を開始。

平成17年8月

「タンパク質結晶化技術の開発」が平成17年度兵庫県COEプログラム推進事業に採択され、研究を実施。

平成17年12月

兵庫県知事より経営革新計画(X線集光ミラー)の承認を取得。

平成18年2月

「硬X線ナノ集光用高精度楕円ミラーの実用化」が新技術開発財団の新技術開発助成に採択され、研究を実施。

平成18年3月

「硬X線ナノ集光用高精度楕円ミラーの実用化」が中小企業基盤整備機構の中小企業・ベンチャー挑戦支援事業のうち事業化支援事業に採択され、研究を実施。

平成18年9月

「放射光用超高精度形状大型ミラー製造技術の開発」が兵庫県の平成18年度兵庫県COEプログラム推進事業に採択され、財団法人高輝度光科学研究センター(現在の公益財団法人高輝度光科学研究センター、理化学研究所の関連団体、以下「高輝度光科学研究センター」という。)、理化学研究所、大阪大学と共同研究を実施。

平成18年12月

神戸市よりKOBEドリームキャッチプロジェクトによるX-KOBEに認定(X線集光ミラー)。

平成19年1月

ひょうご産業活性化ファンド第2号投資事業有限責任組合(ひょうごキャピタル第2号ファンド)より出資を受け、資本金を65,000千円に増資。

平成19年2月

大阪府茨木市(彩都あさぎ)に開発センターを開設。

平成19年7月

「軟骨再生医療のためのGMP対応自動回転培養システムの構築」がJSTの平成19年度科学技術振興機構大学発ベンチャー創出推進に採択され、独立行政法人産業技術総合研究所(現国立研究開発法人産業技術総合研究所、以下「産業技術総合研究所」という。)と共同研究を実施。

平成19年9月

「放射光用超高精度形状大型ミラー製造技術の開発」が兵庫県の新産業創出支援事業(新製品・新技術:産学連携・事業連携)に採択され、研究を実施。

平成21年9月

「放射光用ミラーに関する加工技術の高精度化」が経済産業省の平成21年度補正予算事業戦略的基盤技術高度化支援事業に採択され、大阪大学と共同研究を実施。

  同年同月

「形成外科用自動細胞培養装置」が経済産業省の平成21年度補正予算ものづくり中小企業製品開発等支援補助金(試作開発等支援事業)に採択され、研究を実施。

平成22年4月

「X線ナノ集光ミラー製造プロセスに関する技術開発」がJSTの平成22年度高度研究人材活用促進事業に採択され、研究を実施。

平成23年2月

「放射光用ミラーに関する加工技術の高精度化」が経済産業省の平成22年度予備予算事業戦略的基盤技術高度化支援事業加速枠に採択され、大阪大学と共同研究を実施。

 

 

平成23年3月

「再生医療等に用いる大型軟骨組織を高効率に形成する細胞培養システムの開発」が経済産業省の平成23年度第3次補正予算戦略的基盤技術高度化支援事業に採択され、大阪大学、産業技術総合研究所と共同研究を実施。

平成24年5月

「放射光用X線ミラー製造の効率化のための加工及び計測技術の開発」が経済産業省の平成23年度グローバル技術連携・創業支援補助金(一般枠)に採択され、大阪大学、OptiWorks株式会社と共同研究を実施。

平成25年7月

「ナノ集光用焦点距離可変型ミラーの試作開発」が経済産業省の平成24年度ものづくり中小企業・小規模事業者試作開発等支援補助金に採択され、大阪大学と共同研究を実施。

  同年同月

「放射光用X線長尺KBナノ集光ミラーの製造技術に関する研究」が経済産業省の平成25年度中小企業経営支援等対策費補助金に採択され、大阪大学と共同研究を実施。

  同年同月

「3次元細胞培養システムによる再生医療等に用いるヒト軟骨デバイスの開発」が京浜臨海部ライフイノベーション国際戦略総合特区の平成24年度課題解決型医療機器等開発事業に採択され、公立大学法人横浜市立大学(以下「横浜市立大学」という。)、産業技術総合研究所、大阪大学と共同研究を実施。

平成26年6月

「iPS細胞等の3次元大量培養技術の開発」が経済産業省の平成26年度戦略的基盤技術高度化支援事業に採択され、産業技術総合研究所、大阪大学と共同研究を実施。

平成26年7月

「再生医療等に用いるヒト軟骨デバイスの実用化のための3次元細胞培養システムの開発・事業化」が京浜ライフイノベーション国際戦略総合特区の平成26、27年度医工連携事業化推進事業に採択され、横浜市立大学、産業技術総合研究所、大阪大学と共同研究を実施。

平成26年10月

大阪府茨木市彩都やまぶきに新社屋を竣工し、同所に開発センターを移転。

平成27年7月

「1m級長尺放射光X線ミラー用高精度成膜装置の開発」が経済産業省の平成26年度補正ものづくり・商業・サービス革新補助金に係る補助金に採択され、研究を実施。

  同年同月

細胞観察機能を有したiPS細胞用自動培養装置の開発が平成27年度おおさか地域創造ファンドの重点プロジェクト事業助成金に採択され、研究を実施。

平成27年9月

本社を大阪府茨木市(彩都やまぶき)に移転。

平成27年12月

OUVC1号投資事業有限責任組合<通称:OUVC1号ファンド>(無限責任組合員:大阪大学ベンチャーキャピタル株式会社)及びバイオ・サイト・キャピタル株式会社より出資を受け、資本金を139,240千円に増資。

平成28年4月

大阪大学吹田キャンパス産学連携本部B棟内に細胞培養センターを開設。

平成28年5月

商号を株式会社ジェイテックコーポレーションに変更。

  同年同月

中小企業庁の「はばたく中小企業・小規模事業者300社」(わざ、生産性優良)に選定。

平成28年9月

「臨床試験を目指す3次元細胞培養システムを用いた革新的ヒト弾性軟骨デバイス創出」が国立研究開発法人日本医療研究開発機構(AMED)の産学連携医療イノベーション創出プログラム(ACT-M)に採択され、横浜市立大学、地方独立行政法人神奈川県立病院機構神奈川県立こども医療センターと共同研究を開始。

平成29年8月

「iPS細胞等幹細胞の高効率な継代作業を実現した3次元大量継代培養自動化技術の実用化開発」が経済産業省の平成29年度戦略的基盤技術高度化支援事業に採択され、大阪大学と共同研究を実施。(平成29~31年度)

  同年同月

「回折限界下で集光径可変な次世代高精度集光ミラーの製造技術の開発」が平成29年度兵庫県最先端技術研究事業(COEプログラム)に採択され、大阪大学、理化学研究所、高輝度光科学研究センターと共同研究を実施。

 

3【事業の内容】

当社は、世の中にないオンリーワンの技術により、広く社会に貢献することを経営理念として、創薬、医療技術分野におけるイノベーションの推進に貢献するシステムの開発、販売を推進してまいりました。

当社は、『オプティカル事業』と『ライフサイエンス・機器開発事業』の2つのセグメントを有しております。

『オプティカル事業』の主要製品は放射光及びX線自由電子レーザー施設向けX線ナノ集光ミラーであります。

当事業では、兵庫県に建設されました大型放射光施設「SPring-8」<注1>や、「SPring-8」に隣接して建設されましたX線自由電子レーザー施設「SACLA」<注2>及び海外の同様の施設で行われておりますX線を利用した基礎研究や産業利用など幅広い研究のための高度化された分析装置に使用されるX線ナノ集光ミラーを中心とした特殊ミラーの製造・販売を行っております。

『ライフサイエンス・機器開発事業』の主要製品は各種自動細胞培養装置、その他自動化装置であります。

当事業では、創業当初から大手企業と各種自動細胞培養装置を共同開発し、製造・販売してまいりました。また医療及びバイオ分野以外にも半導体分野、化学・繊維分野、印刷分野等の様々な分野において研究機関や企業からの委託開発製品や独自の製品を開発・製造・販売してまいりました。

 

(1) オプティカル事業

当事業では、物質科学だけでなく、広く創薬や医療技術の基礎研究に取り組んでいる兵庫県の大型放射光施設「SPring-8」やX線自由電子レーザー施設「SACLA」等国内外の先端的放射光施設やX線自由電子レーザー施設等で使われる反射表面の形状精度が1ナノメートル(10億分の1メートル、以下nmと表記。)以下の超高精度のX線ナノ集光ミラー等の設計開発・製造・販売を行っております。

本ミラーは放射光X線をnmスケールまで絞ることが可能で、そのことにより分析精度の向上、測定時間の短縮や極微小領域の分析等を実現し、放射光の優れた特性を発揮させることが可能になります。

 

(a) 放射光施設及びX線自由電子レーザー施設向けX線ナノ集光ミラーの技術的背景

「SPring-8」や「SACLA」で利用されている放射光は、電子銃から放出した電子を光とほぼ等しい速度まで加速した後に、磁力によってその電子の進行方向を曲げたときに発生し、赤外線、可視光線、紫外線、軟X線(波長が比較的長い、薄い空気層でも吸収されるような透過力の弱いX線)、硬X線(エネルギーが高く透過力の強いX線)等の色々な種類の光で構成されております。この放射光に含まれているX線は、大学の研究室や病院のレントゲン室などにある検査装置等で発生するX線と比べ、10億倍以上明るく、X線の発生方法の違いにより発散せずに遠方まで進む特性を有するなど優れた性質を有し、例えば物質の種類や構造、性質を詳しく分析することができ、物質科学、生命科学、医学など様々な分野で幅広く利用され、産業技術の発展に貢献しております。

従来、放射光施設などにおいて硬X線集光を行うためには、ゾーンプレート<注3>を用いた光学系<注4>では集光強度、集光径<注5>に限界があり、後に普及したKB型光学ミラー<注6>でも、研削技術がネックとなり、研究者が期待する精度のミラーを製作することが不可能でありましたが、平成17年に大阪大学で開発された2つの超平坦化基盤技術により、「SPring-8」の理化学研究所・播磨研究所と、ナノメートルオーダー<注7>の非球面形状精度と表面粗さを両立したKB型光学ミラーを共同研究し、世界で初めて硬X線を回折限界<注8>まで集光(最小集光径36nm×48nm)することに成功しました。

その2つの超平坦化基盤技術とは、原子レベルで平坦な完全表面(任意形状でありながら、高い形状精度を持つ、原子レベルで平坦な表面であり、表面層にも原子配列の乱れが全く無い表面)を実現するナノ加工技術EEM(Elastic Emission Machining)と表面形状をナノメートル精度で計測可能なナノ計測技術RADSI(Relative Angle Determinable Stitching Interferometry)及びMSI(Micro Stitching Interferometry)といい、この技術によって開発したミラーは、“KB Nanofocus mirror”として従来にない性能を有し、国内外の研究者から商品化が望まれました。

そこで当社ではこのKB型光学ミラー(以下「X線ナノ集光ミラー」という。)を、大阪大学のナノ加工技術EEMとナノ計測技術RADSI及びMSIをもとに、当社が創業時から培ってきた機器開発の技術を用いてミラー製造に関わる各種の自動化製造装置を開発し、実用化いたしました。

平成18年からは本技術により製作したミラーを“OsakaMirror”(平成21年商標登録済)と名付け販売を開始し、世界の先端的な放射光施設やX線自由電子レーザー施設の研究者から評価を得て、数多くの研究施設に納入しております。

 

(b) ナノ加工技術EEM(Elastic Emission Machining)について

EEMは大阪大学森勇藏名誉教授らによって研究開発されたナノ加工法であり、従来の研磨や研削とは全く異なる加工技術で、化学反応を利用した加工法であります。このEEMによる加工で、加工物と反応性のある微細粉末粒子を超純水の流れによって加工物表面に供給し、このとき加工物表面との間で化学反応が生じ、引き続き超純水の流れから受ける抵抗によって、粉末粒子が加工物表面から取り除かれる際、加工物表面の原子が粉末粒子によって持ち去られることにより加工が進みます。またこの加工法は初期の材料表面に存在するマイクロメートル単位以下の凹凸の凸部だけを選択的に研磨することを特徴としており、最終的には凹凸の高さは1nm以下(原子数個分)となり、現在世界で最も凹凸の無い面を作り出すことに成功した加工法であり、原子レベルで平坦な表面を作製することができます。(図1参照)

また、通常の一般的に行われている表面加工技術であるエッチングやCMP(Chemical Mechanical Polishing)は薬品を用いますが、EEMは薬品を用いないため、環境にやさしい加工技術といえます。

0201010_001.png

図1.EEM原理

 

下の写真はシリコンウェーハの表面をEEMしたときの加工表面をSTM(走査型トンネル顕微鏡)で観察したもので、理想平面に対してのPV値(最大-最小値)が2.4nm(図2.(a))から0.5nm(図2.(b))まで改善されています。また原子層ごとに色分けをした結果、95%が3原子層で構成される、世界レベルで平坦な加工であることが実証されています。図2.(c)はEEM面で、各輝点は原子1つに対応しており、機械的歪み(物体が引張り・圧縮・せん断等の外力によって物体の変形状態を表す尺度で、物体の基準(初期)状態の単位長さあたりに物体内の物質点がどれだけ変位するかを示す。)が一切なく原子配列を乱さず40×40nmの95%が3原子層で構成されている、世界レベルで平坦な加工法であることを実証しています(「Hard X-ray Diffraction-Limited Nanofocusing with Kirkpatrick-Baez Mirrors」Hidekazu Mimura, Satoshi Matsuyama, Hirokazu Yumoto, Hideki Hara, Kazuya Yamamura, Yasuhisa Sano, Masufumi Shibahara, Katsuyoshi Endo, Yuzo Mori, Yoshinori Nishino, Kenji Tamasaku, Makina Yabashi, Tetsuya Ishikawa, Kazuto Yamauchi /Japanese Journal of Applied Physics Vol.44,No.18,2005,pp.L539-L542 )

0201010_002.png

0201010_003.png

PV2.4nm

PV0.5nm

 

(a)超LSI用シリコンウェーハ表面

(b)EEM後の表面

(c)測定領域40×40nm

図2.STMによるEEM表面の観察

 

当社では本EEM技術の基本特許に関する特許実施権を取得しており、また関連特許は全て自社で保有し、更に各種EEM装置は全て内製化しており、競合メーカーとの差別化を図っております。

 

(c) ナノ計測技術RADSI(Relative Angle Determinable Stitching Interferometer)及びMSI(Microstitching

 Interferometer)

大阪大学山内和人教授らによって研究開発された表面形状ナノ計測法であります。このMSIとはマイケルソン型位相シフト干渉計<注9>で微小領域を計測することで表面粗さ(高周波成分。表面粗さとなるエラーは高周波として捉えられ、反射率に影響する。)を評価し、大面積をナノ形状計測する技術です。

ただしMSIだけでは本ミラーのような非球面形状では大きなうねり(低周波成分。ミラーの形状のエラーは低周波として捉えられ、集光率に影響する。)を計測することは不可能で、フィゾー型干渉計<注10>に独自のスティチング機構(連続した測定表面を計測する仕組み。)を開発し、測定表面を徐々に傾けて取得した各計測データをつなぎ合わせることにより形状データを算出する本計測技術RADSIを開発し、非球面形状でも低周波成分の形状計測をすることを可能にしました。(図3参照)

その結果それぞれの計測結果(MSIの高周波成分とRADSIの低周波成分)を組み合わせることにより、非球面ミラー全体の形状の測定において、全空間波長の計測誤差を最小限に抑えてnm精度で形状計測することに成功しました。(図4参照)

RADSI

MSI

0201010_004.png

0201010_005.png

長い空間波長領域(低周波成分)でPV1nmの測定
再現性がある→問題点:高周波成分の誤差がある。

数mm以下の空間波長領域(高周波成分)でPV1nmの測定再現性がある→問題点:一度に大面積の測定ができない。

図3.表面形状ナノ計測技術MSI及びRADSI

 

0201010_006.png

全空間波長の形状をPV1nm以下の精度で計測可能。

図4. 組み合わせ形状データ

 

当社はこの計測技術を用いた自動化装置も大阪大学との共同開発により、EEM装置と同様に内製化し、事業化を加速することができました。

RADSI及びMSI技術に関連する特許は全て大阪大学との共同出願であり、既に数多く特許を取得しております。

さらに現在、当社では需要の高まっている長尺ミラー用のRADSI及びMSIを独自に開発し、1m長の長尺の非球面形状の反射ミラーの形状の測定においても、計測誤差をナノメートルオーダーで形状計測が可能となりました。

 

(d) 事業の概要

当社が販売するX線ナノ集光ミラーは兵庫県にあります「SPring-8」に代表される大型の放射光施設や「SACLA」のようなX線自由電子レーザー施設のほか世界各地の同様の施設で使われ、顧客は主に国内外の国立の研究機関や大学の研究者であり、国の研究予算により、年々積極的に新しい研究が提案され、新しい光学系の構築がなされております。

最近では放射光施設やX線自由電子レーザー施設において、物理、化学、生物などの基礎科学研究分野から、医学利用、医薬品設計、材料評価などの応用分野に加えて産業利用ニーズも高まりをみせ、放射光利用者は年々増大しております。これに伴い、より小さな試料やより高い空間あるいはエネルギー分解能(放射線のエネルギー測定の精度を表す指標。)での分析が求められ、光を扱う技術への高度化の需要は世界レベルで高まっており、当社の“OsakaMirror”の需要が拡大しております。特に平成25年頃からアメリカやヨーロッパだけでなく東アジアの放射光施設やX線自由電子レーザー施設からの当社への受注も増加しております。

例えば「SPring-8」では60本近いビームライン(放射光施設には放射光の取り出し口が複数設けられており、そこから取り出した放射光を用いて様々な実験や分析が行われています。この取り出し口から放射光を取り込むラインをビームラインという。)が稼働しており、それぞれのビームラインの川下でのX線ナノ集光ミラーの需要がありますが、ビームラインの川中、川上でも放射光の高調波カットや任意の波長を選択するための分光用の回折格子(グレーティングミラー。放射光施設で生み出される光は、波長の長い赤外線から波長の短いX線まで様々な波長の光が混在しており、その光から軟X線など特定の波長だけを取り出す(分光する)ために用いられる。)など2枚~8枚程度の様々な光学ミラーが使われております。その各種ミラーもX線ナノ集光ミラー同様に高精度化が要求されており、当社ではそれら需要にも積極的に応えてまいりました。

当社では常に海外の競合メーカーに対する技術的な地位を保持するために加工・計測に関する製造設備の高度化を図り、また次世代のミラーや様々な自由曲面ミラーの製品化のための研究開発を進めております。

平成29年8月に兵庫県最先端技術研究事業(COEプログラム)に採択され、「回折限界下で集光径可変な次世代高精度集光ミラーの製造技術の開発」、大阪大学、理化学研究所及び高輝度光科学研究センターと共同研究を実施し、次世代ミラーの商品化を目指しています。

X線ナノ集光ミラーはカスタムメイドであり、これを使用する研究者の実験条件により、その都度形状設計が必要となります。当社は長年大阪大学、理化学研究所及び高輝度光科学研究センターとの共同研究を推進し、その研究を通してX線ミラーの設計のノウハウを習得したことにより、顧客である研究者に対して最適なX線ミラーの提案が可能となり、今では海外の競合企業に対して差別化が図れております。

さらに本ナノ加工・計測技術を使って、放射光以外のX線光学素子<注11>用など他の産業分野(半導体、医療及び宇宙分野等)へ製品展開を図るために他企業との共同開発を積極的に進めております。

製造手順は、X線ミラーを受注してから形状設計を実施、承認後、原料となる単結晶シリコンなどのインゴットを調達し、まず外部の協力企業において目標形状に対して機械研磨、研削加工などで形状前加工(近似加工)を実施します。その後当社で目標形状に対してnm精度までナノ加工EEMとナノ計測RADSI及びMSIを繰り返し、製品を完成させます。また必要に応じてX線ミラーの反射表面に金やロジウムなどを均一にコーティングします。

販売体制としては、顧客の大半が国立研究機関や大学などであるため入札になる場合が多く、基本的には直接販売を行っております。また放射光施設のビームラインをまとめてプラント業者に発注するケースもあり、その工事受注業者からの発注になる場合もあります。

 

〔事業系統図〕

以上述べた事項を事業系統図によって示すと次のとおりであります。

0201010_007.png

図5.オプティカル事業系統図

 

なお、平成29年6月期のオプティカル事業の顧客属性別の売上高(売上高比率)については、大学が10,750千円(1.5%)、企業が126,549千円(18.0%)、公的研究機関が568,164千円(80.5%)となっております。

(2) ライフサイエンス・機器開発事業

(a) 事業の概要

当事業では、創業当初は創薬スクリーニング<注12>に関連する細胞培養<注13>から、再生医療に関連する細胞培養まで様々な細胞操作を自動化した各種自動細胞培養装置やiPS細胞<注14>用の各種細胞培養装置の開発・製造・販売を推進してまいりました。

当社の自動細胞培養装置は、培地と呼ばれる細胞増殖に欠かせない栄養分を交換したり、細胞を培養したり、培地を保存したりする様々な機能をオールインワンにまとめた全自動化のシステムであることが特長で、この医療及びバイオ分野では顧客の希望する内容が多様化しており、顧客ごとに独自の操作手順を提案し、カスタムメイドで製造・販売してまいりました。

しかし最近では高価な自動細胞培養装置に対して量産汎用タイプを目指し、iPSアカデミアジャパン株式会社(現株式会社iPSポータル)とiPS細胞専用の自動細胞培養装置の開発に成功し、京都大学の山中伸弥教授がノーベル生理学・医学賞を受賞した直後、タイムリーに販売することができました。また長年産業技術総合研究所と浮遊培養(培地内を細胞が浮遊状態で増殖する培養方法)の一種である独自のCell Float技術<注15>を用いた3次元培養<注16>装置をコアにした再生医療向け3次元細胞培養システムの研究開発を推進し、また再生医療や創薬へ製品展開を図っております。

尚、医療及びバイオ分野以外でも企業からの委託開発を受注してOEM製品として供給したり、独自の製品としてX線ナノ集光ミラー用の集光装置等を製造しております。

当事業では、ユーザーへの提案から開発・設計は自社で実施しておりますが、その後の製造に関しては外部の協力会社に委託するファブレス化を進めております。

販売体制としては、直接販売のほか販売チャンネルとして広く販売代理店を活用しております。

また当社の認知度向上のため細胞培養に関わる展示会や学会において積極的に機器紹介やその中で使用されております技術の紹介等を実施し、最近ではiPS関連や再生医療等の研究会や団体へ積極的に参画することにも努めております。

 

事業系統図

以上述べた事項を事業系統図によって示すと次のとおりであります。

0201010_008.png

図6.ライフサイエンス・機器開発事業系統図

 

なお、平成29年6月期のライフサイエンス・機器開発事業の顧客属性別の売上高(売上高比率)については、大学が31,300千円(32.4%)、企業が62,583千円(65.0%)、公的研究機関が2,464千円(2.6%)となっております。

(b) 研究開発

当社は、再生医療分野や創薬スクリーニング分野への展開を図るため、下記のような研究開発に取組んでおり、再生医療や創薬スクリーニング向けの各種細胞培養に関連する製品開発に注力しております。

 

・再生医療向け細胞培養装置の研究開発について

当社は、長年産業技術総合研究所と研究開発を進めてまいりました3次元培養技術を用い、京浜臨海部ライフイノベーション国際戦略総合特区事業(平成24年度課題解決型医療機器等開発事業、平成26、27年度医工連携事業化推進事業)として、横浜市立大学、産業技術総合研究所、大阪大学とともに「再生医療等に用いるヒト軟骨デバイスの実用化のための3次元細胞培養システムの開発・事業化」に関する共同研究を推進し、昨年度からは国立研究開発法人日本医療研究開発機構(AMED)の産学連携医療イノベーション創出プログラム(ACT-M)に採択され(「臨床試験を目指す3次元細胞培養システムを用いた革新的ヒト弾性軟骨デバイス創出」)、横浜市立大学及び神奈川県立こども医療センターと臨床研究を開始しております。(「第2 事業の状況 6 研究開発活動」を参照。)

本事業では再生医療等に用いる数十mm以上の大きさの弾性軟骨<注17>の大型組織細胞の培養を可能とする3次元細胞培養システムを開発し、製品化の目途を立てております。

 

・創薬スクリーニング用細胞培養装置の研究開発について

当社は、経済産業省の「平成26年度中小企業経営支援等対策費補助金(戦略的基盤技術高度化支援事業)」(平成26~28年度)に採択され、産業技術総合研究所、大阪大学と「iPS細胞等の3次元大量培養技術の開発」の共同研究を推進し、独自の3次元培養技術であるCell Float技術を応用し、創薬スクリーニングの毒性試験等に用いる3次元の肝臓細胞組織等を均質で大量に培養可能な大量培養装置や、この大量の3次元組織細胞を用いた創薬スクリーニング用自動化装置の開発に成功しました。

当社では本装置を用い、肝臓細胞そのもののスクリーニングに向けた細胞特性の評価や品質安定性の評価が行える体制の構築も進め、これら3次元培養した肝臓細胞をより安価に提供する培養プロセスの開発に努め、製薬会社等が行っております創薬開発プロセスにおける動物を用いたスクリーニング工程との置き換え並びにスクリーニングの信頼性の向上を目標としたシステムの研究開発を行っております。

 

・iPS細胞のための培養技術の研究開発について

このCell Float技術をもとにしたiPS細胞等の未分化維持培養のためのシステムである回転浮遊培養装置「CellPet 3D-iPS」<注18>やスフェロイド<注19>を小片化するフィルトレーション装置「CellPet FT」<注20>などの製品化に成功しました。さらにiPS細胞等の大量培養のための技術開発も推進し、今年度から戦略的基盤技術高度化支援事業(平成29~31年度)に採択され、大阪大学医学部及び工学部と「iPS細胞等幹細胞の高効率な継代作業を実現した3次元大量継代培養自動化技術の実用化開発」のための共同研究を進めております。

 

・細胞培養センター設立について

平成28年4月から大阪大学吹田キャンパス産学連携棟本部B棟内に、当社で開発を進める各種バイオ関連機器の上市(新製品を市販すること)に向けた培養評価の実施と、様々な研究機関や企業とのオープンイノベーションの場とすることを目的に、細胞培養センターを設けました。現在、既に複数の企業と培養に関する新製品開発を目指し、共同研究を実施しております。(「第2 事業の状況 6 研究開発活動」を参照。)

 

注1:大型放射光施設「SPring-8」(Super Photon Ring-8 GeV)

「SPring-8」とは、兵庫県の播磨科学公園都市にある世界最高性能の放射光を生み出すことができる大型放射光施設です。放射光とは、電子を光とほぼ等しい速度まで加速し、磁石によって進行方向を曲げた時に発生する、細く強力な電磁波のことです。「SPring-8」では、この放射光を用いてナノテクノロジー、バイオテクノロジーから産業利用まで幅広い研究が行われています。「SPring-8」の名前はSuper Photon ring-8 GeV(80億電子ボルト)に由来しています。

「SPring-8」は国内外の産学官の研究者等に開かれた共同利用施設であり、平成9年から放射光を大学、公的研究機関や企業等のユーザーに提供しています。課題申請などの手続きを行い、採択されれば、誰でも利用することができます。

「SPring-8」の施設者は理化学研究所であり、「SPring-8」の運転・維持管理、並びに利用促進業務を高輝度光科学研究センターが行っています(図A参照)。

 

注2:X線自由電子レーザー施設「SACLA(SPring-8 Angstrom Compact Free Electron Laser)」

平成18年3月に策定された第3期科学技術基本計画(平成18年3月28日閣議決定)において国家基幹技術の一つとして選定されたX線自由電子レーザー施設として、平成18年度から理化学研究所と「SPring-8」を運営する高輝度光科学研究センターが共同で施設の建設・整備を行い、平成23年3月に完成、0.063nm(0.63Å(オングストローム:微小な長さを表すのに用いられる単位。1Å=0.1nm))の世界最短波長のX線レーザー生成に成功した施設であり、平成24年3月7日より供用運転を開始しています(図A参照)。

0201010_009.png

図A 大型放射光施設「SPring-8」、X線自由電子レーザー施設「SACLA」

 

注3:ゾーンプレート

物質透過率の高いX線では、物質毎の屈折率が変わらないため、レンズは役に立ちません。そこで、ゾーンプレートと呼ばれる光の通るところと通らないところが交互に並ぶ同心円状のものを用い、ピンホールのように光の回折と干渉を利用した集光方法があります

 

注4:光学系

光学系とは、光の反射や屈折などの性質を利用して物体の像をつくったり、集光したりする部品や装置の総称のことを示すものです。部品としてはミラーやレンズが当たります。

 

注5:集光強度、集光径

集光強度とは、レンズ等を利用して光を1点に集めた場所(集光点)の明るさのことを示すものです。また、先に述べました集光点が物理的に理想的な集光をしたとしても、極微小ながらある程度の大きさを有しており、その大きさのことを集光径といいます。ここでは、集光強度を高くすることと集光径を小さくすることは同じ意味となります。

 

注6:KB型光学ミラー

2枚の非球面ミラーを特殊な配置をすることによって、2次元的な結像を可能とするミラー。開発者Kirkpatrick(カークパトリック)とBaez(バエズ)の二人の頭文字をとって、KB(Kirkpatrick-Baez)型配置と呼れています。

 

注7:ナノメートルオーダー

nmの単位で表される長さや範囲のことを示します。

 

注8:回折限界

直進している光であっても小さい穴を通過した後ではそのまま直進するのではなく放射的に広がる性質を持っており、この現象を回折といいます。この性質があるために物理的に理想とするレンズを用いて光を1点に集めようとしても限界があることが知られており、このことを回折限界といいます。

 

注9:マイケルソン型位相シフト干渉計

アメリカの物理学者マイケルソンによって考案された二光束干渉計で光速度の測定に用いられます。

 

注10:フィゾー型干渉計

レーザーを光源とする干渉計で、簡単な構成で高精度の平面測定、球面測定が行えるため、最も普及している干渉計です。

 

注11:X線光学素子

光の反射や屈折を起こさせるための部品のことを指します。例えば、ミラーは光を反射させるため、レンズは光を集めたり広げたりするため、プリズムは可視光を7つの色の光に分けるため、偏向フィルターは光の波の向きがそろっているものだけを通過させるために使用されています。

 

注12:創薬スクリーニング

新たな医薬品が製品となるまでの一連の過程を創薬と呼び、種々のアッセイ(評価)系を用いて化合物を評価し、その多くの化合物群(ライブラリー)の中から新規医薬品として有効な化合物を選択する作業のことをいいます。

 

注13:細胞培養

多細胞生物から細胞を分離し、体外で増殖、維持することで、生体外で培養されている細胞のことを培養細胞と呼び、本事業においてはこの培養細胞を培養することを細胞培養といいます。

 

注14:iPS細胞

人工多能性幹細胞(induced pluripotent stem cell)の略。京都大学山中教授が作製に成功し、皮膚細胞に特定の4つの遺伝子を導入することにより、ES細胞(胚性幹細胞)のように様々な細胞に分化・増殖できる万能細胞のことをいいます。特定の細胞や臓器に分化させることによって再生医療の可能性を拡大し、新たな遺伝子治療や薬の開発プロセスでの応用など、医学の臨床及び基礎研究の両面において、今後大きな役割を担っていくものと期待されています。

 

注15:Cell Float技術

Cell Float(図B参照)は、ガス交換膜を裏側に備えた円形のベッセルが、回転することで細胞に与える重力を打ち消すような培養液の流れにより、細胞組織はベッセルの底に沈むことなく、培養液中にふわふわと浮いた状態で徐々に3次元集合体を形成する培養技術で、RWV(Rotating Wall Vessel)回転培養法の一種です。

0201010_010.png

(a)装置本体部           (b)回転培養ベッセル(培養器)

図B Cell Float(CellPet 3D)

 

注16:3次元培養

細胞培養は通常、ディッシュやフラスコを用いて、平面空間上に細胞を接着させ増殖、分化させますが、平面空間上で培養した細胞は2次元シート状組織しか形成せず、培養の目的によっては、得られる細胞組織が十分な機能を持たないことがあります。再生医療のように、3次元的に損傷した組織に移植する組織を生体外で培養する場合、3次元培養による3次元組織が重要であると言われています。

 

注17:弾性軟骨

軟骨組織の一種で、外耳道軟骨、耳介軟骨、喉頭蓋軟骨、鼻軟骨などがこれに属します。軟骨基質は弾性線維で構成されているため弾力を持っています。新鮮なものは黄色く見えるため黄色弾性軟骨とも呼ばれています。

 

注18:CellPet 3D-iPS

主にiPS細胞を立体的(3次元的)な細胞集合体として培養するための、当社が開発した独自の回転浮遊培養装置となります。この装置は培養技術としてCell Float技術(注15を参照)を適用し、また本装置に適用する培養ベッセルはiPS細胞の培養前後の処理作業を考慮し、注射器(シリンジ)型を採用しています(図C参照)。

0201010_011.png

図C 回転浮遊培養装置(CellPet 3D-iPS)

 

注19:スフェロイド

多細胞性球状体、多数の細胞が3次元的に集合した状態で、組織よりはるかに少ない細胞量(数十から数千個程度)の塊のことをいいます。たとえば近年、細胞を「クスリ」として投与することによる治療への期待が高まっており、生体内で細胞は、周りの細胞や細胞外基質と密接な相互作用をしていることから、細胞を三次元培養することで得られる細胞塊であるスフェロイドは、細胞の機能を最大限に引き出すことのできる投与方法として注目されています。

 

注20:CellPet FT

培養したスフェロイド(注19を参照)または組織状の細胞に対して更なる増殖を促すため、また冷凍保存するために必要なサイズに小片化する必要があり、通常の方法である試薬や酵素による作用でなく物理的なせん断作用によって小片化するための独自の細胞小片化装置となります。適用可能な細胞種は多く、iPS細胞だけでなくその他の幹細胞、または癌細胞、組織細胞などを小片化することができます(図D参照)。

0201010_012.png

図D 細胞小片化装置(CellPet FT)

 

4【関係会社の状況】

該当事項はありません。

 

5【従業員の状況】

(1)提出会社の状況

平成29年12月31日現在

 

従業員数(人)

平均年齢(歳)

平均勤続年数(年)

平均年間給与(円)

30( 1 )

43.4

3.9

5,696,858

 

セグメントの名称

従業員数(人)

オプティカル事業

12

( - )

ライフサイエンス・機器開発事業

12

( 1 )

全社(共通)

6

( - )

合計

30

( 1 )

(注)1.従業員数は就業人員であり、臨時雇用者数(パートタイマーを含む。)は、最近1年間の平均人員を( )外数で記載しております。

2.平均年間給与は、賞与及び基準外賃金を含んでおります。

3.全社(共通)として記載されている従業員数は、管理部門に所属しているものであります。

4.最近1年間において従業員数が10人増加しております。これは、業務の拡大に伴う採用によるものであります。

 

(2)労働組合の状況

当社の労働組合は、結成されておりませんが、労使関係は円満に推移しております。